rizoma del agua

Chimalhuacán, México City 2025-2026

the right to drink water

key facts and issues on purified water in Mexico

98%

of Mexican households buy bottled water equaling to

1,385 liters per year

Mexico is a leading country in the consumption of sugary drinks

165 liters

per person per year on average, equivalent to

459 cans

it is estimated that

21 millon

plastic bottles are thrown away daily in Mexico

image source: Cuartoscuro

on average a low-income family can spend around

10% of income

purchasing bottled water and other sugary drinks

despite water shortages,
production of soft drinks & bottled
water is prioritized

production of a liter of bottled water

5-6 liters

production of a liter of soft drinks

10+ liters

the peri-urban area of Chimaulhuacán, Mexico City

the context

Population of approximately

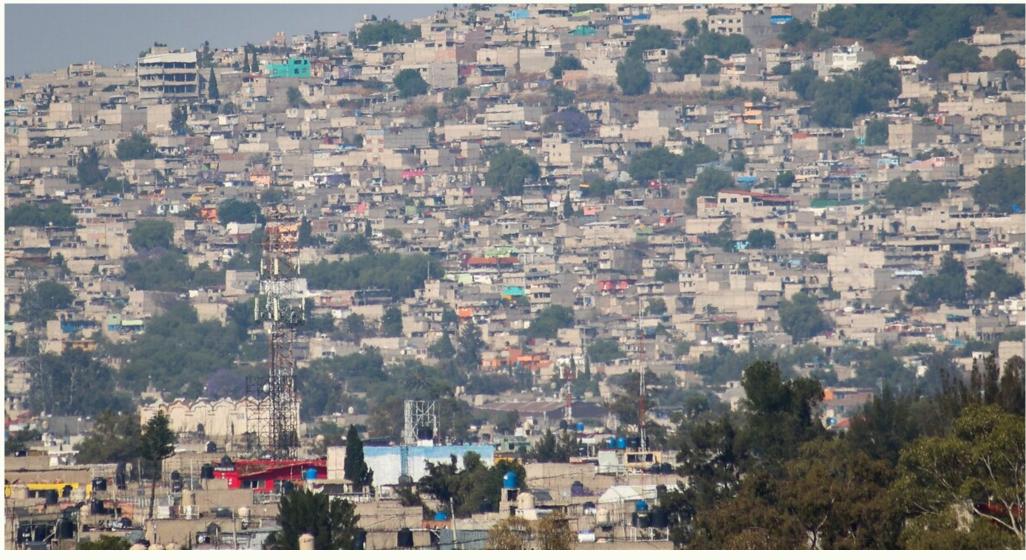
700,000

with strong community organization

the issue

during 2023 40%

of Chimalhuacán's population did not receive potable water. (approximately. 300,000 people)


the opportunity

they have around

20 Sports Centers

neither privately or government owned, (community administered)

opportunities and potential alliances

Chimalhuacán has a complex history stemming from land policy where "ejidos" (local agricultural land) are owned and run locally.

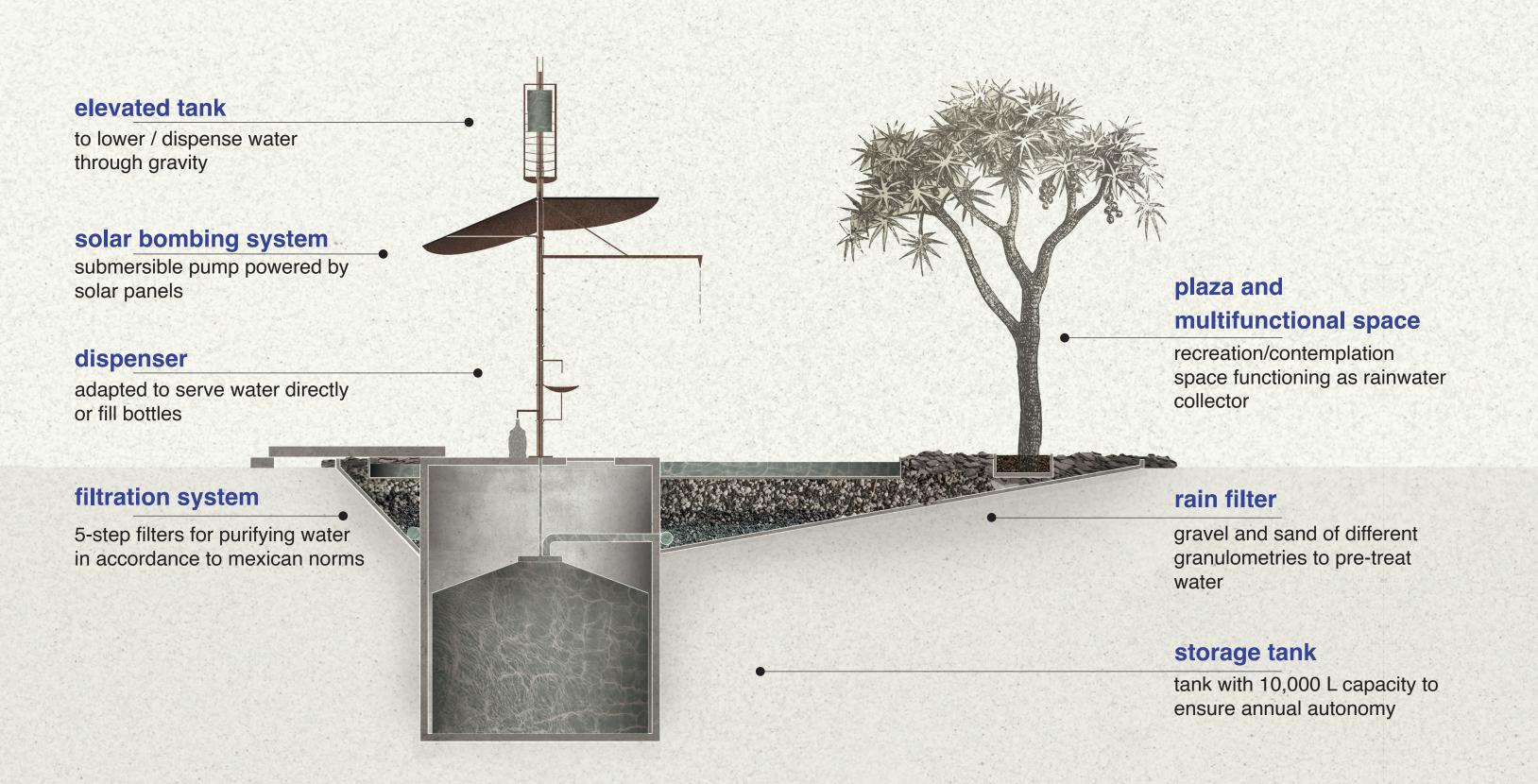
The *deportivos* (sports / community centers) are an example of community driven public space.

They provide fertile ground for self-managed public infrastructures, such as waterspaces.

map of active deportivos Chimaulhuacán and surroundings

Active Alliance

Deportivo las Flores



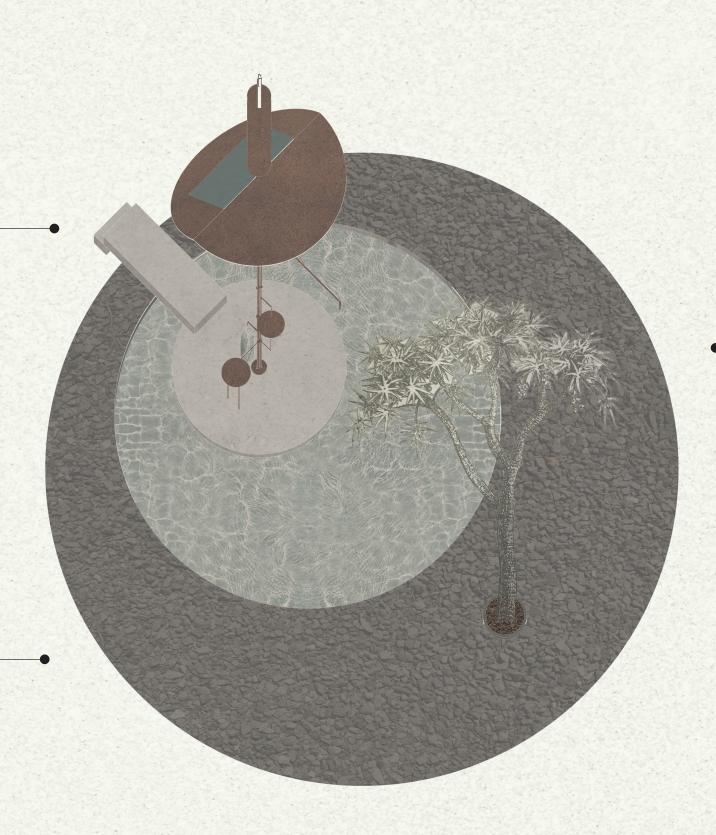
Community and Neighbors

The sports complex is self-managed by the local community and financially sustained through soccer league fees and neighborhood support.

conceptual prototype section

conceptual prototype

ground-level collection


the system is designed to harvest rainwater directly from the ground surface, avoiding the need for large roof structures, while incorporating pre-treatment for water quality

50 square meters

the prototype is designed to collect rainwater from a 50 m² surface, which also serves as a public park.

23,000 annual liters

in the context of Chimalhuacán, this area can harvest up to 23,000 liters of rainwater per year, factoring in a 30% loss.

250 daily cups of water

the collected water will be gradually dispensed, supplying the equivalent of 250 glasses of potable water per day

92,500 annual cups of water

this meets 100% of the annual drinking water needs of 32 people

culture

community workshops on rainwater management

community

participatory design process for a sitespecific project

autonomy

annual water security for local users

scalability

replicable prototype to create a network of water-collecting public parks

space

a public place for contemplation, gathering, or recreation

sustainability

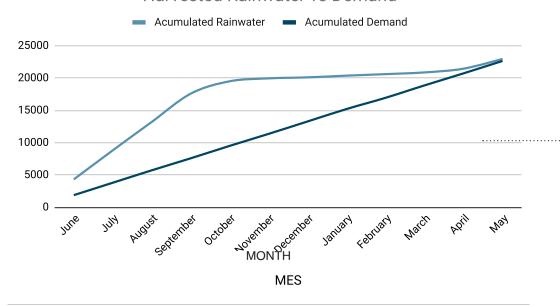
supports local hydrological systems and circular material practices

Key Facts on Rainwater Harvesting in Chimalhuacán

Water per Person
Daily (L)
Annual (L)
This study is done considering an average daily requirement of 2 liters per person

Demand	Description	All coloulations are made considering
Daily	62.00	All calculations are made considering a 50 sgm harvest area, and the
Weekly	434.00	potential to supply 31 people with
Monthly	1891.00	drinking water year-round.

Since the current initiave proposes water fountains in sports facilities, calculations are made with 500 ml water bottles (~16 fl oz),


In this case, 50 m2 is enough to provide 125 people with water daily.

	January	February	March	April	May	June	July	August	September	October	November	December	TOTAL
CDMX precipitation (mm)	6.2	7.7	12.6	23.4	47.1	117.7	149.9	161.4	142.4	61.3	15	2.7	747.4
Potentially Harvested Liters	217.00	269.50	441.00	819.00	1,648.50	4,119.50	5,246.50	5,649.00	4,984.00	2,145.50	525.00	94.50	26,159.00

Rainwater Harvesting in Chimalhuacán

Precipitation	Harvested Liters	Demand (L)	% of satisfied demand	Difference	Acumulated Rainwater	Acumulated Demand	% of satisfied demand	Difference	Maximum Difference
122.9	4,301.50	1860.00	231.26%	2,441.50	4,301.50	1860.00	231.26%	2,441.50	
128.4	4,494.00	1922.00	233.82%	2,572.00	8,795.50	3782.00	232.56%	5,013.50	
125.6	4,396.00	1922.00	228.72%	2,474.00	13,191.50	5704.00	231.27%	7,487.50	
125	4,375.00	1860.00	235.22%	2,515.00	17,566.50	7564.00	232.24%	10,002.50	10,002.50
54.7	1,914.50	1922.00	99.61%	-7.50	19,481.00	9486.00	205.37%	9,995.00	:
12.9	451.50	1860.00	24.27%	-1,408.50	19,932.50	11346.00	175.68%	8,586.50	
4.4	154.00	1922.00	8.01%	-1,768.00	20,086.50	13268.00	151.39%	6,818.50	
7.6	266.00	1922.00	13.84%	-1,656.00	20,352.50	15190.00	133.99%	5,162.50	
6.7	234.50	1736.00	13.51%	-1,501.50	20,587.00	16926.00	121.63%	3,661.00	
7.6	266.00	1922.00	13.84%	-1,656.00	20,853.00	18848.00	110.64%	2,005.00	
16.5	577.50	1860.00	31.05%	-1,282.50	21,430.50	20708.00	103.49%	722.50	
43.4	1,519.00	1922.00	79.03%	-403.00	22,949.50	22,630.00	101.41%	319.50	

Harvested Rainwater vs Demand

A 10,000 L tank or cistern is capable of storing all the rainwater collected during the year.

The graph shows the annual autonomy of the system by comparing cumulative demand and consumption.

locally rooted, globally replicable